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ABSTRACT 

This paper brings together theoretical models, numerical and laboratory observations to provide a comprehensive 

understanding of shear instabilities in flows that contain dust particles. This paper also explores how dust affects shear 

instability in various contexts, including planetary, industrial, and atmospheric environments. 
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INTRODUCTION 

Shear flow refers to a type of fluid motion where a velocity gradient is present between adjacent layers of fluid. Shear flow 

instabilities occur when a fluid flow, in which different layers of fluid move at different velocities (shear flow), becomes 

unstable. These instabilities are a key concept in understanding the transition from smooth to chaotic flow. Understanding 

shear flow instabilities is crucial for predicting and controlling turbulence in various engineering and natural systems, such 

as aircraft wings, weather patterns, and ocean currents. When fine dust particles are introduced into such flows, they can 

greatly influence their behaviour by addingdrag forces, and changing the local properties including density and viscosity of 

the fluid. 

Fine dust particles are usually small enough to remain suspended in the fluid but large enough to impact the flow 

through feedback mechanisms. Their presence can either support or hinder the development of shear instabilities based on 

particle concentration, size distribution, and how particles interact with the fluid. In atmospheric science, for example, 

layers with dust can influence cloud formation and the spread of pollutants. In astrophysical disks, dust can affect the 

formation of planets by causing instabilities that lead to particle clustering. Understanding the link between shear flows and 

dust behavior is crucial for predicting how multiphase flows act in both natural and engineered systems. This study 

summarizes the significant works carried out in this area of research. 
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ANALYTICAL STUDIES 

The shear flow concept was first introduced by Euler (1755), and Rayleigh (1880) was the first to analyze the shear 

instabilities. He proposed that for inviscid flow, instability arises when velocity profile has an inflection point. Utilizing 

half depth of shear layer as feature length and constant velocity at top of shear layer as characteristic velocity, he obtained 

unstable modes for the wave-number between 0 and 0.639. 

Rayleigh (1913) examined the stability of the homogeneous and incompressible shear flow. He determined that 

the stability of this flow was dependent upon the horizontal shear and found that the flow would be unstable if the shear 

vorticity exhibited a local maximum in the region.  

Rayleigh (1917) examined fundamental rotational flow of an inviscid fluid exhibiting angular velocity ω(r), where 

r represents the radial distance from axis of rotation. Through a straightforward physical argument, Rayleigh (1917) 

established his renowned criterion for stability: an essential and sufficient condition for stability of flow concerning 

axisymmetric perturbations is that square of circulation either increases or remains constant with an increase in r, i.e
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Goldstein (1931) examined stability of a shear layer characterized by linear variations in both velocity and 

density, while maintaining constant values for these parameters outside the layer.  Consequently, he incorporated density 

gradient into the flow type analyzed by Rayleigh (1880).  Solberg (1936) examined stability of an axisymmetric baroclinic 

vortex.   

Charney's (1947) seminal research on baroclinic instability is widely recognized. This investigation, utilized a 

quasi-geostrophic model that is continuous in vertical dimension. In his seminal study, he examined velocities with a 

constant vertical shear in a continuously stratified environment. He employed quasi-geostrophic approximation inside  -

plane, and Charney’s(1947)research has served as foundation for stability studies of synoptic-scale systems in 

meteorology. 

Kuo (1949) expanded Rayleigh's(1917) findings to zonal currents on a rotating Earth and examined shear flow 

involving exchange of kinetic energy between fundamental linear flow and sinusoidal disturbances. 

Miles(1960) investigated the role of parallel shear flowU(y)in generating surface waves. His work established that 

the rate of energy transfer to wave with a speed of c is dependent on 𝑈ᇱᇱ(𝑦). 

Stability of heterogeneous non-conducting flows has been investigated by many authors Synge(1938), 

Miles(1960) and Howard(1961). Howard and Guptha (1962) discussed stability of heterogeneous non-conducting fluid 

between two fixed cylinders with a radial gravitational force, and effect of magnetic field on liquid.  

Rudraiah (1970)examined the stability of a heterogeneous, incompressible, non-viscous fluid exhibiting ideal 

performance, confined between two fixed coaxial cylinders, subjected to an azimuthal magnetic field and radial gravity 

force, as well as a magnetic field perpendicular to flow. Throughout the analysis, the flow is assumed to be axi-symmetric.  

His work includes generalization of Miles(1960) theorem (n = ½), the semi-circle theorem (n = 0), and the generalization 

of Synge’s(1938) theorem (n=1). 
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Smith and Davis (1982) determined critical threshold beyond which unstable travelling waves occur, based on 

Miles(1960) work.The magnetic field-induced stability of rotating baroclinic star was investigated by Raghavachar(1984). 

He derived the necessary condition for stability using normal mode analysis, assuming small wavelengths. 

Agarwal and Jaimala(1990a) examined the hydromagnetic stability of non-viscous compressible fluid in a porous 

medium, giving rise to Darcy resistance force in the equations of motion.They found that magnetic field stabilizes the 

system by decreasing the growth rate of unstable modes. 

Sumathi and Raghavachar (1993) investigated linear stability of plane parallel shear flow in rotating systems in 

the presence of long wave disturbances, for a general velocity profile. They have derived analytical equations for the 

instability characteristics and numerically solved a specific case of hyperbolic tangent profile. 

Atul Kumar Goel, Agrawal, and Jaimala (1997) extended Miles(1960) sufficient conditions to an incompressible 

visco-elastic fluid in porous medium based on Brinkman’s model. From these conditions the situation that was known to 

be stable for J>1/4 and which was partly destabilized in presence of a porous medium (Agarwal and Jaimala (1990b)), is 

expected to be stabilized due to the viscosity of the fluid.  

Nidhi Bansalet al(1999) examined the effect of weak magnetic field on the stability of an incompressible, 

viscoelastic shear flow in a porous medium. It was evident that magnetic field and viscosity stabilize the flow while shear 

and permeability destabilize the flow.  

Anshu Agarwalet al (2004) studied the instability of a viscoelastic shear layer in an anisotropic porous medium. 

That is, modes are oscillatory under the condition D(ρDU) ≥ 0 everywhere in flow domain, and existence of oscillatory 

modes can be established even when D(ρDU)<0, provided the condition D(ρDU)<2ρa2U holds here in the flow domain.  

Naresh Kumar Dua and his collaborators (2009) discussed the spatial instability of shear flow in presence of 

parallel magnetic field in porous medium, and spectra of stable as well as unstable modes were obtained. 

Anshu Agarwalet al(2014) examined combined effect of shear as well as thermal buoyancy on stability of 

Oldroydian fluid saturated in porous medium in presence of weak magnetic field. Comparing the result with that obtained 

by Agrawal and Jaimala (1990a,b) for shear flow instability of thermo-convective flow of Newtonian fluid via porous 

medium, which shows that when R1<0, system is stable for all wave numbers undercondition 𝑅஽
ିଵ > 𝑞/2𝑝holds and 

observe that the conditions of stability involve all other important parameters involving contribution due to porous medium 

which is seen to be stabilizing. 

Sumathi et al (2018), (2019)investigated Hall current influence on 3D, non-parallel, stratified shear flow of 

incompressible, perfectly conducting fluid. Nonlinear governing equations are solved under assumption of a homogeneous 

magnetic field. The analysis considers the fluid to be inviscid, incompressible, and perfectly conducting. 

Saffman (1962) introduced a basic mathematical model to study how suspended dust particles affectstability of 

laminar gas flows. The model included two important factors: the dust concentration and a relaxation time (τ). Saffman 

(1962) employed this model to examineeffect of dust particles on stability of laminar gas flow, specifically examining how 

dust impacts critical Reynolds number during transition from laminar to turbulent flow. 
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Michael (1965) posited that in a steady state, dust co-moves with fluid on every side of vortex sheet, exhibiting 

uniform yet generally distinct mass concentrations along with relaxation times on either side. Under these settings,dust is 

found to stabilize system by diminishing growth rates of disturbances over time. 

Palaniswamy and Purushotham (1981) examined impact of fine dust particles on stability of parallelstratified 

shear flows based upon Saffman’s(1962) model. He considered 2D stability problem of plane parallel shear flow (U(y),0,0) 

between two parallel planes y=y1 and y=y2 of inviscid, incompressible, stably stratified fluid laden with consistently 

distributed fine dust particles of uniform size and shape. He found that the sufficient conditions for stability will remain the 

same as those originally conjectured by Miles(1960).  

Evgenys A Smolov and Sergeiv (1998) examined linear stability of incompressible boundary-layer flow of a 

dusty gas over semi-infinite flat plate. Particles are presumed to be influenced solely by Stokes drag.  The issue is 

simplified to solving modified Orr-Sommerfeld equation (Saffman(1962)).  This is resolved numerically through two 

methodologies: directly via the orthonormalization technique and through the perturbation technique at minimal particle 

mass content. Stability properties are computed for both mono and polydisperse particles. 

Bagewadi and Gireesha (2003) investigated the geometry of streamlines in 2D steady compressible dusty gas flow 

and developed mathematical models within Frenet frame field system. Velocities of dust and gas are assessed by assuming 

pressure gradient to be linear, periodic, and exponential. 

Sunil et al (2004) conducted a theoretical analysis of influence of dust particles on thermal convection in 

ferromagnetic fluids assuming the presence of an uniform transverse magnetic field. Heat capacity of dust particles 

increases heat capacity of the fluid, reducing critical magnetic thermal Rayleigh number. Notion of stability exchange is 

observed to be valid for a ferromagnetic fluid heated from belowwithout particulate matter. 

Aravind et al(2009) described stability of flow of dusty gas for Boussinesq fluid and determined bounds for the 

wave velocity of unstable modes.Jaimala et al(2010) examined the effect of fine dust particles on stability of parallel shear 

flows of stably stratified liquid, based upon Saffman’s(1962) model assuming a constant horizontal magnetic field. 

Also,behavior of oscillatory as well as non-oscillatory modes were discussed.  

In addition to discussing time evolution of dust surface density distribution using a stochastic model and deriving 

an advection-diffusion equation, Shugo Michikoshi et al(2012) considered a linearized model of gas disk with dust layers 

and determined the unstable modes. 

Aggarwal and Verma (2016) examined the influence of Hall currents on thermal instability of couple-stress fluids 

containing dust particles. Subsequently, by linearized stability theory as well as normal modes analysis, dispersion relation 

is derived. He discovered that existence of Hall current generates oscillatory modes that were absent. 

NUMERICAL STUDIES 

The scientific literature has placed a great deal of emphasis on stability of parallel shear flow in compressible inviscid 

fluids against infinitesimal perturbations. Kelvin (1880) assumed that the fluid was homogenous, incompressible, non-

viscous, and that it was restricted bya finite space with a specified vorticity. It was found that optimum energy is an 

essential condition for stability. 
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Yanai and Tokioka (1969) conducted numerical experiments that simulated meridional motions within an axially 

symmetric vortex. This experiment involves integration of nonlinear inviscid equations of motion inside a domain 

constrained by rigid limits above and below. The results align with linear theory; however, horizontal wavelength is highly 

dependent on numerical grid size. 

Blumen (1970) examinedstability of barotropic shear flow   LyUU tanh of stably stratified fluid of3D 

disturbances by linear analysis. He found that for mid latitude, quasi geostrophic flows with small Rossby number, the 

system is stable to barocline modes and also found that barotropic mode becomes unstable when Rossby number is greater 

than 0.682(approximately). 

Hazel (1972) studied the stability of stratified shear flow of 2D disturbances proposed by Taylor-Goldstein 

equation, using the Richardson number, wave number, and complex component of disturbance speed. The contribution 

here was to measure temporal growth rate for particular profiles. This study has come across a peculiar phenomenon in the 

region 0≤ J≤ 0.25, (J is typical Richardson number), where flow assumes a stationary neutral curve, which represents a 

stability island in an otherwise unstable environment. 

Churilov and Shukhman(1988)investigated the weakly unbalanced disturbances of modest magnitude in stratified 

shear flow. Shukhman(1991) extended this study by investigating the stability of cylindrical mixing layers at high 

Reynolds numbers.Orszag and Patera (1983), have published extensive literature reviews on shear flow instability. 

Buscalioniand Crespo del Arco (1999) considered numerical and theoretical research of natural convection in 

inclined cavity. The study considered both 2D and 3D enclosures that are heated in the sides. The Prandtl number was 

assumed to be 0.25 while the inclination was placed at 800 from the vertical. They found a distinct difference in the shear 

instability of 2D and 3D enclosures. The results matched the previous experimental results arrived at by Skeldon et al 

(1996). 

Hendrix and Keppens (2014) investigated the impact of dust on Kelvin-Helmholtz instability (KHI) through 

numerical hydrodynamic simulations of dust as well as gas.  They examined the impact of dust on growth rates of KHI in 

both 2D and 3D contexts, as well as how KHI redistributes and aggregates dust. Additionally, they explored potential 

connections between structures observed in 3D KHI and those are identified in molecular clouds. 

 Anu Nath et al (2024) examined instability of dusty simple shear flow with non-uniform distribution of dust 

particles. Their findings, compared with linear stability analysis utilizing Eulerian model, shows that instability originating 

from inviscid conditions was also characterised by critical wavelength, beneath which it is not sustained.  It was also noted 

that heightened particle inertia mitigates unstable modes, however intensity of instability escalates with strength 

of connection among fluid as well as particle phases. 

EXPERIMENTAL STUDIES 

Researchon shear instabilities through experiments exhibitsa rich history in fluid dynamics and material science. Shear 

instabilities occur when differential motion (shear) within a fluid or between layers of materials generates disturbances that 

grow over time, leading to turbulent or irregular flow patterns. Several notable experimental contributions have advanced 

our understanding of this phenomenon. 
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Research conducted by Gordon and Daniel (1967) showed that when viscous fluid traverses porous material, 

tangential stress moves fluid near surface at a velocity UB, which marginally exceeds Q, fluid velocity within bulk 

of porous medium. 

Taylor (1971) posits that when viscous fluid traverses porous solid, it is often presumed that tangential 

components of surface velocity arezero.  When porous material possesses open structure with substantial pores, external 

surface stress might induce tangential flow beneath surface.  

Claudia and Mario (2011) conducted an experimental investigation of velocity profile of fluid subjected to simple 

shear over porous media. They carried out experiments to study the velocity profile of a fluid subjected to simple shear 

flow above a porous surface. The porous layers consist of commercial sandpapers with three distinct grit sizes. By 

gradually lowering the upper plate, they reconstructed the velocity profile, which was observed to remain linear up to about 

250 μm from the interface. Extrapolating this profile to the interface allowed to determine the interfacial velocity as a 

function of the applied stress. The experimental findings were then compared with theoretical predictions obtained by 

solving the Brinkmann-extended Darcy law within the porous medium, coupled with the Stokes equations in the free fluid, 

and enforcing velocity continuity and momentum balance at the interface as proposed by Ochoa-Tapia and Whitaker 

(1995a,b). 

CONCLUSION 

The instability of shear flows in presence of fine dust particles represents a complex interplay between fluid dynamics and 

particulate behaviour. Dust particles influence the onset as well as growth of instabilities by modifying local density, 

generating additional vorticity, and altering momentum exchange between fluid as well as solid phases. These effects can 

either enhance or suppress instability depending on particle concentration, size, and coupling strength with the flow. This 

study emphasizes the significant influence of shear flow instability on the development of turbulence, mixing, and 

transport in velocity-stratified systems, especially in presence of fine dust particles. 
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